If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-12x-84=0
a = 1; b = -12; c = -84;
Δ = b2-4ac
Δ = -122-4·1·(-84)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{30}}{2*1}=\frac{12-4\sqrt{30}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{30}}{2*1}=\frac{12+4\sqrt{30}}{2} $
| 6/10=15/25=18/x=x/55 | | 1x+8=27 | | (4x+7)(2x+7)=0 | | x-2x÷3+x÷2=15 | | 32/x=x/18 | | X-+7-6x=19-3x | | −2+3v=22 | | 1.5-3x/4=0 | | 1.1/2-3x/4=0 | | p=60+32 | | p=260+232 | | 3f+10=11 | | 6+2(4z-7)=3(2z+4) | | X+y=-156 | | 8.8v=-5,28 | | 6t-5=8 | | 5−2n=−9 | | −13=3−4n | | x²+40=(x+2)² | | 4x-14^2=3x^2 | | x#+40=(x+)# | | 2676.9=20(y) | | 2676.9=20(y)^.1/2 | | 7x-1=-6x+6 | | 2676.9=20(y)^.5 | | 5x-3=36 | | 3(10-4a)+2(7a-4)=0 | | 3x+13=8x–2 | | g-{31}=-7 | | 2x^2+10x–48=0 | | 7x-5(x+4)=18 | | 8x-5(x+2)=20 |